Exercise 16.1 : Solutions of Questions on Page Number : 255
Q1:
Find the values of the letters in the following and give reasons for the steps involved.

3 A
+25
B 2

Answer :

The addition of A and 5 is giving 2 i.e., a number whose ones digit is 2 . This is possible only when digit A is 7 . In that case, the addition of $A(7)$ and 5 will give 12 and thus, 1 will be the carry for the next step. In the next step,

$$
1+3+2=6
$$

Therefore, the addition is as follows.

37
+25
62

Clearly, B is 6.
Hence, A and B are 7 and 6 respectively.

Q2 :
Find the values of the letters in the following and give reasons for the steps involved.
4 A
98
+9
C B 3

Answer :

The addition of A and 8 is giving 3 i.e., a number whose ones digit is 3 . This is possible only when digit A is 5 . In that case, the addition of A and 8 will give 13 and thus, 1 will be the carry for the next step. In the next step,
$1+4+9=14$

Therefore, the addition is as follows.
45
$\begin{array}{r}98 \\ +\quad \\ \hline\end{array}$
143

Clearly, B and C are 4 and 1 respectively.
Hence, A, B, and C are 5,4 , and 1 respectively.

Q3 :

Find the value of the letter in the following and give reasons for the steps involved.
1 A
$\times \mathrm{A}$
9 A

Answer :

The multiplication of A with A itself gives a number whose ones digit is A again. This happens only when $A=1,5$, or 6 .

If $\mathrm{A}=1$, then the multiplication will be $11 \times 1=11$. However, here the tens digit is given as 9 . Therefore, $A=1$ is not possible. Similarly, if $A=5$, then the multiplication will be $15 \times 5=75$. Thus, $A=5$ is also not possible.

If we take $A=6$, then $16 \times 6=96$. Therefore, A should be 6 .
The multiplication is as follows.

16
16
$\times \quad 6$
96

Hence, the value of A is 6 .

Q4:
Find the values of the letters in the following and give reasons for the steps involved.

A B
$+3 \quad 7$
6 A

Answer :

The addition of A and 3 is giving 6 . There can be two cases.

(1) First step is not producing a carry

In that case, A comes to be 3 as $3+3=6$. Considering the first step in which the addition of B and 7 is giving A (i.e., 3), B should be a number such that the units digit of this addition comes to be 3. It is possible only when $B=6$. In this case, $A=6+7=13$. However, A is a single digit number. Hence, it is not possible.

(2) First step is producing a carry

In that case, A comes to be 2 as $1+2+3=6$. Considering the first step in which the addition of B and 7 is giving A (i.e., 2), B should be a number such that the units digit of this addition comes to be 2 . It is possible only when $B=5$ and $5+7=12$.

25
$+\quad 3 \quad 7$
$6 \quad 2$

Hence, the values of A and B are 2 and 5 respectively.

Q5 :
Find the values of the letters in the following and give reasons for the steps involved.

A B
$\times \quad 3$
C A B

Answer :

The multiplication of 3 and B gives a number whose ones digit is B again.
Hence, B must be 0 or 5 .

Let B is 5 .
Multiplication of first step $=3 \times 5=15$
1 will be a carry for the next step.
We have, $3 \times A+1=C A$
This is not possible for any value of A.
Hence, B must be 0 only. If $B=0$, then there will be no carry for the next step.
We should obtain, $3 \times A=C A$
That is, the one's digit of $3 \times \mathrm{A}$ should be A . This is possible when $\mathrm{A}=5$ or 0 .

However, A cannot be 0 as $A B$ is a two-digit number.
Therefore, A must be 5 only. The multiplication is as follows.

50

$\begin{array}{r}\times \quad 3 \\ \hline\end{array}$

$$
150
$$

Hence, the values of A, B, and C are 5,0 , and 1 respectively.

Q6:
Find the values of the letters in the following and give reasons for the steps involved.

A B
$\times \quad 5$
C A B

Answer :

The multiplication of B and 5 is giving a number whose ones digit is B again. This is possible when $B=5$ or $B=0$ only.

In case of $B=5$, the product, $B \times 5=5 \times 5=25$
2 will be a carry for the next step.

We have, $5 \times \mathrm{A}+2=\mathrm{CA}$, which is possible for $\mathrm{A}=2$ or 7
The multiplication is as follows.

25
$\times 5$
125
---:
$\times 5$

If $B=0$,
$B \times 5=B \Rightarrow 0 \times 5=0$

There will not be any carry in this step.
In the next step, $5 \times \mathrm{A}=\mathrm{CA}$

It can happen only when $\mathrm{A}=5$ or $\mathrm{A}=0$
However, A cannot be 0 as $A B$ is a two-digit number.

Hence, A can be 5 only. The multiplication is as follows.

50
$\times 5$
250

Hence, there are 3 possible values of A, B, and C .
(i) 5, 0, and 2 respectively
(ii) 2, 5, and 1 respectively
(iii) 7,5, and 3 respectively

Q7:

Find the values of the letters in the following and give reasons for the steps involved.
A B
$\times 6$
B B B

Answer :

The multiplication of 6 and B gives a number whose one's digit is B again.
It is possible only when $B=0,2,4,6$, or 8
If $B=0$, then the product will be 0 . Therefore, this value of B is not possible.
If $B=2$, then $B \times 6=12$ and 1 will be a carry for the next step.
$6 A+1=B B=22 \Rightarrow 6 A=21$ and hence, any integer value of A is not possible.

If $B=6$, then $B \times 6=36$ and 3 will be a carry for the next step.
$6 A+3=B B=66 \Rightarrow 6 A=63$ and hence, any integer value of A is not possible.
If $B=8$, then $B \times 6=48$ and 4 will be a carry for the next step.
$6 A+4=B B=88 \Rightarrow 6 A=84$ and hence, $A=14$. However, A is a single digit number. Therefore, this value of A is not possible.

If $B=4$, then $B \times 6=24$ and 2 will be a carry for the next step.
$6 A+2=B B=44 \Rightarrow 6 A=42$ and hence, $A=7$
The multiplication is as follows.
74
$\times 6$
444

Hence, the values of A and B are 7 and 4 respectively.

Q8:

Find the values of the letters in the following and give reasons for the steps involved.
A 1
$+1 B$
B 0

Answer :

The addition of 1 and B is giving 0 i.e., a number whose ones digits is 0 . This is possible only when digit B is 9 . In that case, the addition of 1 and B will give 10 and thus, 1 will be the carry for the next step. In the next step,
$1+A+1=B$

Clearly, A is 7 as $1+7+1=9=\mathrm{B}$
Therefore, the addition is as follows.

71
$+\quad 19$
90

Hence, the values of A and B are 7 and 9 respectively.

Q9:
Find the values of the letters in the following and give reasons for the steps involved.
2 A B
$\begin{array}{r}\text { + B } 1 \\ \hline\end{array}$
B 18

Answer :

The addition of B and 1 is giving 8 i.e., a number whose ones digits is 8 . This is possible only when digit B is 7 . In that case, the addition of B and 1 will give 8 . In the next step,
$A+B=1$

Clearly, A is 4.
$4+7=11$ and 1 will be a carry for the next step. In the next step,
$1+2+A=B$
$1+2+4=7$

Therefore, the addition is as follows.
247
471
+418
718

Hence, the values of A and B are 4 and 7 respectively.

Q10 :

Find the values of the letters in the following and give reasons for the steps involved.
12 A
$+6 \mathrm{AB}$
A 09

www.ncrtsolutions.in www.ncrtsolutions.com

Answer :

The addition of A and B is giving 9 i.e., a number whose ones digits is 9 . The sum can be 9 only as the sum of two single digit numbers cannot be 19. Therefore, there will not be any carry in this step.

In the next step, $2+\mathrm{A}=0$
It is possible only when $\mathrm{A}=8$
$2+8=10$ and 1 will be the carry for the next step.
$1+1+6=A$
Clearly, A is 8 . We know that the addition of A and B is giving 9 . $A s A$ is 8 , therefore, B is 1 .
Therefore, the addition is as follows.
128
$+681$
809

Hence, the values of A and B are 8 and 1 respectively.

Exercise 16.2 : Solutions of Questions on Page Number : 260
Q1:

If $21 y 5$ is a multiple of 9 , where y is a digit, what is the value of y ?

Answer :

If a number is a multiple of 9 , then the sum of its digits will be divisible by 9 .
Sum of digits of $21 y 5=2+1+y+5=8+y$
Hence, $8+y$ should be a multiple of 9 .
This is possible when $8+y$ is any one of these numbers $0,9,18,27$, and so on ...
However, since y is a single digit number, this sum can be 9 only. Therefore, y should be 1 only.

Q2 :
If $31 z 5$ is a multiple of 9 , where z is a digit, what is the value of z ?
You will find that there are two answers for the last problem. Why is this so?

Answer :

If a number is a multiple of 9 , then the sum of its digits will be divisible by 9 .
Sum of digits of $31 z 5=3+1+z+5=9+z$
Hence, $9+z$ should be a multiple of 9 .
This is possible when $9+z$ is any one of these numbers $0,9,18,27$, and so on ...
However, since z is a single digit number, this sum can be either 9 or 18 . Therefore, z should be either 0 or 9.

Q3 :

If $24 x$ is a multiple of 3 , where x is a digit, what is the value of x ?
(Since $24 x$ is a multiple of 3 , its sum of digits $6+x$ is a multiple of 3 ; so $6+x$ is one of these numbers: $0,3,6,9,12,15,18$.... But since x is a digit, it can only be that $6+x=6$ or 9 or 12 or 15 . Therefore, $x=0$ or 3 or 6 or 9 . Thus, x can have any of four different values)

Answer :

Since $24 x$ is a multiple of 3 , the sum of its digits is a multiple of 3 .

Sum of digits of $24 x=2+4+x=6+x$
Hence, $6+x$ is a multiple of 3 .
This is possible when $6+x$ is any one of these numbers $0,3,6,9$, and so on ...

Since x is a single digit number, the sum of the digits can be 6 or 9 or 12 or 15 and thus, the value of x comes to 0 or 3 or 6 or 9 respectively.

Thus, x can have its value as any of the four different values $0,3,6$, or 9 .

Q4:

If $31 z 5$ is a multiple of 3, where z is a digit, what might be the values of z ?

Answer :

Since $31 z 5$ is a multiple of 3 , the sum of its digits will be a multiple of 3 .

That is, $3+1+z+5=9+z$ is a multiple of 3 .
This is possible when $9+z$ is any one of $0,3,6,9,12,15,18$, and so on \ldots

Since z is a single digit number, the value of $9+z$ can only be 9 or 12 or 15 or 18 and thus, the value of x comes to 0 or 3 or 6 or 9 respectively.

Thus, z can have its value as any one of the four different values $0,3,6$, or 9 .

